US Regulation of Cell and Gene Therapy Products

Scott R. Burger, MD
Advanced Cell & Gene Therapy
US FDA CBER and CDRH Regulate Cell Therapy, Gene Therapy, and Tissue-Engineered Products

• FDA-CBER Office of Cell, Tissue, and Gene Therapy (OCTGT)
 – Human Cell, Tissues and Cellular and Tissue-Based Products (HCT/Ps)

• May be regulated as Biologics, biologics/device Combination Products, sometimes as Devices
 – IND or IDE pathway to BLA, 510K
 – FDA CBER for Biologics
 – FDA CBER/CDRH for Combination Products, CBER typically primary Center
US FDA Office of Cell, Tissue and Gene Therapy (OCTGT)-Regulated Products

- Cell therapy products
- Gene therapy products
- Tumor vaccines and immunotherapy products
- Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps)
- Tissue and tissue-based products
- Cell- or tissue-based combination products
 - Cell/device, tissue/device, other
- Devices used for cells/tissues
 - Processing devices, other
- Xenotransplantation products
- Donor screening tests (cadaveric blood samples)
Regulation is Risk-Based

• Cell therapy, gene therapy, and tissue-engineered products are complex living biologics, and are being developed in novel, evolving ways. Regulation of these products commonly reflects their novel, diverse nature.

• Regulations define criteria for product safety, identity, purity, potency, and clinical efficacy.

• FDA follows a science-driven, risk-based approach in evaluating whether and how these criteria have been met.

• Products that present greater risk of adverse clinical outcome require more and better control, and hence more stringent regulation and oversight.
FDA’s Risk-Based Regulatory Framework for Cell and Gene Therapy Products

- Products that present greater risk of adverse clinical outcome require more and better control, and hence more stringent regulation and oversight.
- Products that present greater risk of adverse clinical outcome require more and better control, and hence more stringent regulation and oversight.

<table>
<thead>
<tr>
<th>Lower Risk, “361” Products</th>
<th>Higher Risk, “351” Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparatively simple, well-understood products, low-risk applications</td>
<td>More complex, novel biologic products, higher-risk applications</td>
</tr>
<tr>
<td>• Minimal manipulation, homologous use only, not combined with another article, no systemic effect (with some exceptions)</td>
<td>• Does not meet all criteria for a “361” product</td>
</tr>
<tr>
<td>• Cells expanded ex vivo, gene-modified, activated, etc.</td>
<td></td>
</tr>
</tbody>
</table>
FDA Requirements - GMPs, GTPs, GCPs

<table>
<thead>
<tr>
<th>Good Manufacturing Practices (GMPs)</th>
<th>Ensure consistent manufacture of safe, pure, potent products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Tissue Practices (GTPs)</td>
<td>Prevent infectious disease transmission</td>
</tr>
<tr>
<td></td>
<td>Donor screening and testing</td>
</tr>
<tr>
<td></td>
<td>Prevent cross-contamination, mixups</td>
</tr>
<tr>
<td></td>
<td>Product recovery, processing, storage, labeling, distribution</td>
</tr>
<tr>
<td>Good Clinical Practices (GCPs)</td>
<td>Ethical, scientific quality standards</td>
</tr>
<tr>
<td></td>
<td>Protect trial subjects rights, safety, confidentiality</td>
</tr>
<tr>
<td></td>
<td>Assure credibility of clinical trial data</td>
</tr>
</tbody>
</table>
Application of FDA Regulatory Requirements

<table>
<thead>
<tr>
<th></th>
<th>361 HCT/P</th>
<th>351 HCT/P</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
<td>361 PHS Act</td>
<td>361 PHS Act, 351 PHS Act, FD&C Act</td>
<td>FD&C Act</td>
</tr>
<tr>
<td>Applicable Laws</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicable Regulations</td>
<td>21 CFR 1271</td>
<td>21 CFR 1271, 21 CFR 600’s, 21 CFR 200’s, 21 CFR 300’s</td>
<td>21 CFR 800’s</td>
</tr>
<tr>
<td>Marketing Pathway</td>
<td>Premarket review not required</td>
<td>BLA</td>
<td>PMA, 510(k), HDE</td>
</tr>
</tbody>
</table>
Regulatory Considerations in Product Development

Product development stage determines key aspects of regulatory review. Safety is a consistent, critical focus throughout product development.

Raj K. Puri, MD, PhD
US FDA OCTGT
Development Throughout Clinical Trials

• FDA expects ↑ control as clinical development progresses
 – Manufacturing, characterization, specifications refined based on experience

• Early-stage trials and manufacturing must be sufficiently controlled to enable clinical development to licensure
 – The nightmare scenario: the therapy works, but inadequate understanding of the product impedes further clinical progress
Regulatory Interactions and Submissions

- FDA
 - Pre-Pre-IND meeting
 - Emphasizes preclinical pharmacology/toxicology and initial clinical trial plans
 - See separate file, Pre-Pre-IND Briefing Document Elements
 - Pre-IND meeting
 - Formal meeting or teleconference with FDA, to address questions or concerns prior to preparing IND application.
 - IND application
 - Preclinical pharmacology/toxicology
 - CMC (manufacturing and testing)
 - Clinical

- NIH RAC
- IRB
Interactions With FDA Throughout Product Development

- Pre-IND/IDE Phase
 - Preclinical Development
 - Pre-IND/IDE Meeting (Informal)
 - IND Application
 - IND/IDE Review Phase
 - Clinical Trials Phase I - II - III
 - End of Ph 2 Meeting
 - FDA must review IND within 30 days
 - License Application (BLA)
 - Pre-BLA/PMA Meeting
 - Marketing Application Phase
 - Post-marketing Phase
 - Marketed Product
 - Safety Meetings
 - Post BLA Meeting

Adapted from http://www.fda.gov/Cder/genomics/pharmaconcept/n.pdf
Pre-Pre-IND Checklist

• Emphasis on preclinical pharm/tox, and clinical trial plans. Address key aspects of review at this stage.
• Description of the intended clinical product
• Manufacturing and testing (CMC)
 – Manufacturing process flow diagram and description, show sampling points
 – Raw materials table - materials used, quality, source, ancillary material or excipient
 – Proposed in-process and release testing - safety, purity, identity, potency, stability
• Outline of proposed clinical trial
 – Subject population
 – Dosing levels and regimen
 – Route of product administration
 – Dosing procedures
 – Parameters to be assessed
• Summary of preclinical data to date
 – Activity/prooﬁng of concept
 – Toxicity/safety
 – Immunology
 – Relevant publications
 – Detailed discussion, outline of each additional planned study to assess safety of product in humans
• Specific questions about pharm/tox aspects of pre-pre IND package
Pre-IND Checklist - I

• More extensive than Pre-Pre-IND briefing document. Should describe manufacturing and testing in greater detail, and address plans for patient monitoring and follow-up.

• Product information
 - Description of product, intended use, clinical application
 - Description of the vector (if any) and vector derivations
 - Description of the delivery device, if applicable

• Manufacturing and testing (CMC)
 - Manufacturing scheme – outline and description
 - Raw materials – source, grade, qualification
 - In-process testing - steps, process-continuation criteria
 - Release testing – safety, identity, purity and potency
 - Final formulation, specifying excipients and container
 - Stability – describe stability studies and specifications
 - Description of manufacturing site(s) and QA/QC system
Pre-IND Checklist - II

• Product use
 – Transport and storage descriptions, specifications, tracking system
 – QA/QC system at clinical site(s)
 – Description of product administration procedure

• Preclinical information and discussion based on outcome
 – Summary of all *in vitro* and *in vivo* preclinical studies, with results and interpretation
 – Rationale for proposed therapy, discussion of proof of concept, evidence that product has desired biologic effect
 – Dosing
 • Dose/activity and dose/toxicity relationship
 • Proposed initial safe dose, dose escalation scheme(s) for clinical study
 – Toxicity
 • Type, frequency, and severity of toxicities in normal animals and disease model(s)
 • Potential clinical toxicities, projected risks, organ(s) affected, indicators
 – Relationship of route of administration and dosing regimen to product efficacy and toxicity
 – Risk evaluation - significance and severity of observed toxicities/adverse findings compared to other disease-related adverse events
Pre-IND Checklist - III

• Preclinical studies yet to be performed, for results to be included in IND
 – Detailed outline of study designs

• Proposed clinical study design including
 – Target indication
 – Objective
 – Sample size
 – Study site location(s)
 – Patient eligibility criteria, key inclusion and inclusion criteria
 – Dose(s) and route(s) of administration, procedure
 – Concomitant medications and treatments
 – Outcome measures
 – Data analysis plan
 – Safety monitoring plan
 – Termination criteria
Elements of the IND Application

- Preclinical
 - Activity, efficacy, safety studies
 - Localization/distribution
- CMC (manufacturing, testing)
 - Manufacturing process, facility
 - Reagents and other raw materials
 - Testing – patient, product
- Clinical
 - Trial plan, patient population, inclusion/exclusion criteria, dosing
 - Outcomes, monitoring, informed consent
Characterization Testing - US FDA Requirements

• Based on 21 CFR 610
• Safety
 – Sterility, mycoplasma, adventitious agents
 – Tumorigenicity
• Purity, Identity
 – Measure intended product components, as well as contaminating cells and other undesired agents, including endotoxin.
 – Reagents/ancillary materials, excipients
• Potency
 – Relevant biological function(s). May require a matrix of functional and nonfunctional assays.
• Stability

Characterization is expected to improve as clinical development progresses, but analytical rigor is needed from the outset
Combination Products

• Administering cells with certain specified devices, or seeded onto scaffolds, can trigger regulatory evaluation as a combination product
 – Cells regulated under Biologics/Drug regulations, device regulated under Device regulations

• Discuss regulatory pathway with FDA, and with Device manufacturer
• Establish cell-device compatibility
• Include cells and device in preclinical studies
• Establish and qualify administration procedure, and clinician-investigator training
Questions to address for successful IND

- What type(s) of cells will be used, and what is the source?
- What is the projected dose? How many cells are needed to achieve a minimum/optimal biological effect?
- Have the cells been sufficiently characterized for the stage of clinical development?
- What is the proposed mechanism of action?
- Is cell survival/engraftment necessary?
- Is repair or replacement of damaged tissue the goal?
- Hypothesized cell fate following administration?
- Will the product be administered as a suspension? Seeded onto a scaffold? Encapsulated?
- Will immunosuppression be needed?
- What is/are the biologically relevant animal species for preclinical studies?
- Are there potentially relevant animal models of disease/injury that can be used?
- What is the optimal method/route/anatomical site/timing for product administration?
- **What is the risk/benefit balance?**
Comparability – Product Used in Preclinical Studies vs. Clinical Product

• Manufacturing process
 – Should be as similar as possible for the cell therapy product used in preclinical studies and the clinical product
 – Tissue/cell harvest, cell isolation, selection, activation, gene modification, expansion, formulation/scaffold seeding, encapsulation, storage conditions, etc.

• Characterization testing combination product
 – Assess comparability of data for preclinical and clinical products
 – Emphasis on identity testing and, to the extent possible, potency
 • Cellular morphology and phenotype
 • Molecular/biochemical markers
 • Functional assays
Risk Assessment/Management Tools

- Quality by Design (QbD)
- Failure Mode and Effect Analysis (FMEA)
 - Particularly useful for cell therapy, tissue-engineering processes
- Problems, mistakes, and failures are valuable indicators of process weaknesses.
- Deviation reports are tools for process improvement.
 - Productive mistake-making

Guidance for Industry
Q9 Quality Risk Management

Guideline on the risk-based approach according to annex I, part IV of Directive 2001/83/EC applied to Advanced therapy medicinal products

A Quality Risk Management Model Approach for Cell Therapy Manufacturing

www.ac-gt.com
Failure Mode and Effect Analysis (FMEA)

• Define process steps
• Failure Mode identification
 – Ways in which a product or process could fail to perform intended function, at each step
 – Possible causes and effects of failure
• Failure Mode rating
 – Severity – consequences of failure
 – Probability of failure
 – Detectability – likelihood of detecting failure
• Criticality analysis, assigns priorities for each failure mode
 – Risk Priority Number = Severity × Probability × Detectability
• Identify and perform actions to mitigate risk
• Ongoing monitoring and follow-up
Common Causes of Hold Actions
Phase 1, Cell and Gene Therapy

• Insufficient preclinical information to assess patient risk
 – Lack of preclinical safety data, Insufficient safety data to support starting dose, incomplete safety study reports, insufficient product characterization

• Inadequate preclinical study design
 – Safety monitoring (safety/activity endpoints), animal number, study dose and duration, route of administration

• Insufficient preclinical data to support safety of administration to humans

• Product to be used in trial differs from that used in preclinical studies

• Dose escalation scheme is too aggressive

• No information about compatibility of product and delivery device

• Inadequate clinical monitoring plan to observe potential toxicities

• Inappropriate patient eligibility criteria

• *The potential benefits do not outweigh potential risks*
Common Causes of Hold Actions
Phase 1, Cell Therapy

• Manufacturing
 – Absent or inadequate manufacturing description
 – Research-grade ancillary reagents inadequately qualified
 – Bovine-derived components inadequately qualified
 – No description of tracking and segregation procedures to assure patient receives correct cells
 – Segregation and cleaning procedures inadequately described
 – Inadequate QA/QC program

• Testing
 – Inadequate lot release testing
 – Cells do not meet minimum viability criteria of 70%
 – No action plan for positive sterility test after administration
 – Donor virus testing - inadequate or inappropriate tests
 – Incomplete human pathogen testing (human cell lines)
 – No tumorigenicity testing
Common Causes of Hold Actions
Phase 1, Gene Therapy

• Manufacturing and Testing
 – Vector sequence not provided
 – No *in vitro* adventitious agent testing of final vector product, or incorrectly performed *in vitro/in vivo* adventitious agent testing
 – Incomplete human pathogen testing on human cell lines
 – Inadequate QA/QC program
 – Segregation and cleaning procedures inadequately described
 • Prevent cross-contamination from production of multiple vectors
 – Inadequate lot release testing
 • RCR assays, endotoxin, sterility testing
Common Causes of Hold Actions
Post-Phase 1, Cell and Gene Therapy

• Critical assays (potency, identity, other) are not...
 – ... validated, reproducible, quantitative, sensitive, specific, biologically relevant
• Stability program inadequate, unsuitable, or absent
• Characterization data insufficient to establish lot release specifications
• Comparability not adequately demonstrated
• Safety issues
 – High levels of bioburden resulting from contamination
BLA Issues

• *Significant* change(s) made late in development, without adequate product comparability data
 – Viral clearance evaluation studies may be needed
• Process validation data incomplete, inadequate, or absent
• Inadequate stability studies
• Characterization data inadequate to support establishing specifications
• Consistent manufacturing inadequately demonstrated
• Compliance issues - contract manufacturers, finish and fill facilities
Regulatory Considerations for Initiating Clinical Trials

- Risk/Benefit – clinical trial subject safety is balanced against potential public health benefits of novel therapies.

- Risk assessment based on:
 - Product characterization data and preclinical data supporting safety
 - Product administration procedure, dose levels, dosing scheme
 - Patient eligibility criteria
 - Parameters to monitor clinically, safety monitoring plans, follow-up
Key Points to Enable Progress to Clinical Trial

- Dosing!
- Minimum effective dose
 - Single or multiple administrations?
- Route/mode of administration
 - Effect of any surgery on interpretation
- Sustained efficacy, if applicable
- Blinding
- Long-term follow-up
References and Resources

• Guidance for FDA Reviewers and Sponsors: Content and Review of CMC Information for Human Somatic Cell Therapy INDs (www.fda.gov/cber/gdlns/gtindcmc.htm)

• BSI PAS 93 - Characterization of Cell Therapy Products, 2011 (draft)

• Assay Validation International Conference on Harmonization; Validation of Analytical Procedures: Methodology; Q2B, 1996 (www.fda.gov/cder/guidance/ichq2b.htm)

• ICH Q6B: Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products

• USP Chapter <1046> Cell and Gene Therapy Products

• USP Chapters <111, 1030, 1032, 1033, 1034> Biological Assays

• USP Chapter <1098> Validation of Test Kits

• EMEA CHMP Guideline on Potency Testing of Cell Based Immunotherapy Medicinal Products For the Treatment of Cancer, 2007

Standards and Standardization Efforts

- US FDA, EMA
 - Guidance documents
- USP, EP, EDQM
 - Pharmacopeial standards for reagents, ancillary materials
- ATCC
 - Cell lines, other biological standards
- ASTM Division on Tissue Engineered Medical Products
 - Biomaterials, Cells and Tissue-Engineered Constructs, other standards
- International Conference on Harmonisation (ICH)
- Foundation for the Accreditation of Cellular Therapy (FACT)
- ICCBBA, ISBT 128
- International Society for Cellular Therapy (ISCT)
- American Association of Blood Banks (AABB)
- American Association of Tissue Banking (AATB)
- American Society for Blood and Marrow Transplantation (ASBMT)
- College of American Pathologists (CAP), Clinical Laboratory Improvement Amendments (CLIA)
- Joint Accreditation Committee (with EBMT)
- International Organization for Standardization (ISO)